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Abstract. The reflection of a test electromagnetic wave normally impinging on a plasma surface is inves-
tigated within the formalism of the surface impedance. The plasma is assumed to possess an anisotropic
two-temperature bi-Maxwellian electron velocity distribution function. The linearly polarized impinging
wave during reflection transforms into an elliptically polarized one, the degree of ellipticity depending
on the electron temperature anisotropy. Polarization modifications of the reflected wave are particularly
important in the conditions of the anomalous skin-effect, when the influence of the wave magnetic field on
the electron kinetics in the skin layer is strong. Relations are reported connecting the reflected wave basic
parameters to those of the reflecting plasma surface, making possible, through the experimental determi-
nation of the reflected wave characteristics, to find the plasma electron concentration and the two effective
temperatures.

PACS. 52.38.Dx Laser light absorption in plasmas (collisional, parametric, etc.) – 52.50.Jm Plasma
production and heating by laser beams (laser-foil, laser-cluster, etc.)

1 Introduction

The properties of plasmas possessing an anisotropic elec-
tron distribution over velocities since several years are
the subject of a considerable number of investigations
(see, for instance, [1,2]). The interest to such an issue
stems from the experimental evidence that in the inter-
action processes of intense ultra-short laser pulses with
matter are easily created plasma media in which the elec-
tron velocity distribution function (EDF) is significantly
anisotropic. In particular, anisotropic EDFs are formed
in tunnel atom ionization [3–7]; in intense field inverse
bremsstrahlung [8,9]; in plasmas exhibiting along some
given direction a sufficient high degree of spatial non-
uniformity [10]. Still another well investigated interaction
process yielding anisotropic EDFs is that in which qua-
sistatic electric and magnetic fields act upon the plasma
electrons. Anisotropic EDFs are responsible for the ap-
pearance of new features in an entire series of plasma
phenomena, as well as the cause of new ones. Among the
latter, perhaps, one of the most interesting is the Weibel
instability (see, for instance, [11–13]). Among anisotropic
plasmas, a particular interest is attached to plasma with
an anisotropic bi-Maxwellian EDF. Such a plasma ex-
hibits unusual properties of inverse bremsstrahlung ab-
sorption [14]. In such a plasma the properties of harmonic
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generation of a pump field due to electron-ion collisions
are found unusual also [15]. The same is true for plasma
X-ray spectra [16].

In reference [17] we have reported on a theoretical
treatment to deal with collisionless radiation absorption
in the skin-layer of a plasma with an anisotropic bi-
Maxwellian EDF, like that defined below in the beginning
of Section 2. There it has been shown that the formed
new anomalies of the collisionless absorption are due to
the influence of the magnetic field on the electron kinet-
ics in the skin-layer. In the present paper, we address an-
other plasma phenomenon, caused by the EDF anisotropy.
Namely, we investigate how the reflected wave polarization
changes with respect to that of the incident wave when the
reflection takes place at the surface of a plasma possessing
an anisotropic bi-Maxwellian EDF. In the framework of
the simplest, but frequently used model (see, also [18–22]),
in which the electrons are assumed to undergo specular
reflection at the plane plasma surface, in Section 2 we re-
port the basic relations concerning: (i) the components of
the surface impedance of an anisotropic plasma; (ii) the
reflection coefficient; and (iii) the phase-shift, measuring
the degree of the transformation of a linearly polarized
incident wave into an elliptically polarized reflected wave.
In Section 3 we report on a detailed analytical and numer-
ical description of the impedance components imaginary
parts as function of ∆, a quantity measuring the degree of
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Fig. 1. A picture of reflection of a linearly polarized wave
by a plasma with electron temperature anisotropy, and of the
chosen geometry.

electron temperature anisotropy; and of δ, measuring
the skin-effect anomaly degree in an isotropic plasma
(∆ and δ are defined below in Sects. 2 and 3). In Sec-
tion 4 the behavior of the phase-shift Ψ versus ∆ and δ is
investigated.

2 Basic relations

Let us consider the interaction of a linearly polarized elec-
tromagnetic wave of the form

Ei(z, t) = E cos(ωt − kz), z < 0, (1)

with plasma filling the half-space z > 0. A graphical repre-
sentation of the interaction geometry is shown in Figure 1.
In (1) E = (Ex, Ey , 0), and the frequency ω is related to
the wave number k by the relation ω = kc, where c is the
speed of light. The frequency ω of the incident wave is as-
sumed much smaller than the electron plasma frequency
ωL =

√
4πe2N/m, where e, m and N are, respectively,

the electron charge, mass and density. Further, it is as-
sumed that the plasma EDF is given by an anisotropic
bi-Maxwellian function with the symmetry axis along the
Ox-direction, i.e.

F =
( m

2π

)3/2 N

T⊥
√

Tx

exp
[
−mv2

x

2Tx
− m

2T⊥

(
v2

y + v2
z

)]
.

(2)

The choice of this EDF implies that the electron motion
along the Ox-axis is characterized by the effective tem-
perature (average kinetic energy) Tx, while by the tem-
perature T⊥ that in the yOz-plane. The temperatures are
given in energy units. As known, a plasma with anisotropic
EDF may be unstable against the development of the
Weibel instability, yielding magnetic field generation and
inverse influence of the generated magnetic field on the

electron velocity distribution. Different regimes of Weibel
instability occurring at different values of temperature
anisotropy were studied in references [11–13]. Here we con-
sider time intervals shorter than the inverse growth rate of
the Weibel instability and accordingly we exclude from our
consideration the EDF distortion due to this instability.
The influence of the binary electron collisions is neglected.
It is, in particular, justified by the conditions defining the
anomalous skin-effect, taking place in sufficiently hot plas-
mas (see, for instance, [17–22]). Similarly to the analysis
given in [17–22], we confine our investigation to the sim-
plest case, when electrons are specularly reflected by the
plasma plane surface. Assuming that the plasma has a
sharp plane boundary we exclude from our consideration
the hydrodynamic ion motion which leads finally to a den-
sity gradient. Such approximation is reasonable for time
intervals smaller than the ratio of the effective skin depth
to the acoustic velocity [18]. As the incident wave has two
components Ex and Ey, the characteristics of its interac-
tion with the anisotropic plasma are described by the two
components Zx and Zy of the surface impedance. Follow-
ing the usual procedure to describe the reflected wave and
the field inside the plasma, for the impedance components
we find (see Appendix)

Zα = −2i
π

k

∫ ∞

0

dq

q2 − k2εα(ω/qvT )
, (α = x, y), (3)

where vT =
√

T⊥/m. The component εx(ω/qvT ) of the
dielectric function entering the expression (3) is given by

εx(ξ) = 1 − ∆
ω2

L

ω2
− ω2

L

ω2
(1 − ∆)

×
{

ξ exp
(
−ξ2

2

)∫ ξ

0

dt exp
(

t2

2

)

− i
√

π

2
ξ exp

(
−ξ2

2

)
sign q

}
, ∆ = 1 − Tx/T⊥. (4)

The component εy(ω/qvT ) too is described by an ex-
pression like (4), where, however, one must put ∆ = 0.
The surface impedance components (3) define the absorp-
tion and reflection coefficients A and R of a plasma with
anisotropic bi-Maxwellian EDF according to the relations

A = 1 − R, R = |Rx|2 cos2 ϕ + |Ry|2 sin2 ϕ, (5)

Rα =
(Zα − 1)
(Zα + 1)

= |Rα| exp (iΨα), (6)

where ϕ is the angle between the incident wave polariza-
tion vector E and the Ox-axis, Ψα is the wave phase-shift
at the reflection by the plasma surface. The components of
the reflected wave are Erx(z, t) and Ery(z, t), which may
be written as

Erα(z, t) = |Rα|Eα cos (Ψα − ωt − kz), (7)

where Ex = E cosϕ, Ey = E sin ϕ. Finally, the func-
tions |Rα| and Ψα, are expressed through the real and
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imaginary parts Z ′
α and Z ′′

α of the surface impedance com-
ponents Zα = Z ′

α + iZ ′′
α according to the relations

|Rα| =
[
(Z ′

α − 1)2 + (Z ′′
α)2

]1/2 [
(Z ′

α + 1)2 + (Z ′′
α)2

]−1/2

,

(8)

Ψα = arctan
[

Z ′′
α

Z ′
α − 1

]
− arctan

[
Z ′′

α

Z ′
α + 1

]
· (9)

According to relations (7–9) the link between the reflected
wave and the incident one is fully determined by the
real and imaginary parts of the impedance. As a conse-
quence of the Landau damping, the intensity of the re-
flected wave is smaller than the intensity of the incident
one. The intensity decrease of the reflected wave is mea-
sured by the decrease of the function |Rα| with respect to
unity. Another important effect is related to the circum-
stance that different components of the incident wave are
reflected by the anisotropic plasma with different phase-
shifts, Ψx �= Ψy. Due to the difference between Ψx and
Ψy, the reflected wave polarization differs as compared to
that of the incident wave. Namely, the linearly polarized
incident wave (1) is reflected by the anisotropic plasma as
an elliptically polarized wave (7) (see Fig. 1). Under these
conditions, the ellipticity degree of the reflected wave is
characterized by the phase-shift difference

Ψ = Ψx − Ψy. (10)

In the physical conditions under consideration here, the
real and imaginary parts of the impedance components
in absolute value show small departures from unity (see
Ref. [17] and below the asymptotic formulae (16–24) and
Figs. 2 and 3). It allows to simplify the relations (8, 9),
and to write the following approximate expressions for the
reflection coefficient R (5), and phase-shift Ψ (10)

R = 1 − A � 1 − 4Z ′
x cos2 ϕ − 4Z ′

y sin2 ϕ, (11)

Ψ � 2Z ′′
y − 2Z ′′

x . (12)

According to (11) the reflection (absorption) coefficient is
basically determined by the real parts of the impedance
components. The functions Z ′

α and A (as given by (11))
has been analyzed by us previously [17]. At the contrary,
the phase-shift is determined by the difference of the imag-
inary parts. The following two sections are devoted to the
investigation of the functions Z ′′

α and Ψ (12).

3 Impedance imaginary parts

Let us consider now the behavior of the imaginary parts
of the impedance components in different limiting cases.
With this aim we introduce the notations

Ω = ω/ωL � 1, δ = vT ωL/ωc, (13)

where δ is the parameter characterizing the anomaly de-
gree of the skin-effect. Then, from (3) and (4) for the com-

Fig. 2. The imaginary part of the impedance component Z′′
x

versus the parameter δ = vT ωL/ωc. The different curves corre-
spond to three values of the parameter ∆ = 1−Tx/T⊥ charac-
terizing the degree of temperature anisotropy ∆: 0 (T⊥ = Tx);
0.75 (T⊥ = 4Tx); −4 (Tx = 5T⊥).

Fig. 3. The same function as in Figure 2, but versus ∆ =
1 − Tx/T⊥ for three values of the parameter δ: 0.3, 1, 3. Ω =
ω/ωL = 0.1.

ponent Z ′′
x we have

Z ′′
x = − 2

π
δΩ

×
∫ ∞

0

dx
Re(x)[

Re2(x) + π
2 (1 − ∆)2 δ4x6 exp (−x2)

] , (14)
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with

Re(x) =

1−x2δ2

[
Ω2−∆−(1 − ∆)x exp

(
−x2

2

) ∫ x

0

dt exp
(

t2

2

)]
·

(15)

The corresponding expression for Z ′′
y follows from (14)

and (15) if we put there ∆ = 0. As we are interested in
the conditions when Ω = ω/ωL � 1 and Ωδ = vT /c � 1,
in the asymptotic expressions to be obtained below the
dependence of Re(x) from Ω2 will be neglected.

Below we analyze the behavior of the impedance imag-
inary part as a function of the parameters ∆ and δ.
As stated, the parameter ∆ = 1 − Tx/T⊥ is a mea-
sure of the electron temperature degree of anisotropy. To
highly anisotropic plasmas with EDF elongated along the
Ox-axis correspond Tx � T⊥, ∆ < 0 and |∆| � 1.
To highly anisotropic plasmas, in which the electrons
are much hotter in the yOz-plane correspond instead
T⊥ � Tx, and ∆ ∼ 1. To weakly anisotropic plasmas
correspond instead |Tx − T⊥| � T⊥, and |∆| � 1.

As far as the parameter δ = ωLvT /ωc is concerned, we
point out that it characterizes the degree of anomaly of the
skin-effect in an isotropic plasma, when Tx = T⊥. For such
a plasma, the condition δ < 1 corresponds to the high-
frequency skin-effect, when the distance gone through by
thermal electrons in a field period vT /ω is smaller than
the skin layer depth c/ωL. The condition δ > 1, in-
stead, corresponds to vT /ω > c/ωL, when the anoma-
lous skin-effect takes place. In an anisotropic plasma the
relation between vT =

√
T⊥/m and c/ωL, and with it

the parameter δ itself, rigorously speaking, can not serve
alone to define the transition condition from the high-
frequency to the anomalous skin-effect. As a matter of
fact, in an anisotropic plasma, because of the influence
of the magnetic field on the electron motion in the skin
layer, the electron thermal motion along the Ox-axis be-
comes very important (see Appendix). In this context,
the transition condition from high-frequency to anomalous
skin-effect may be also connected to the relation between
vTx =

√
Tx/m and the skin layer depth, which, by the way,

may not coincide with c/ωL. It is not difficult to carry out
the analysis of the anomaly degree of the skin-effect for
an anisotropic plasma. However, as it is not necessary to
evidence the peculiar features of the incident wave reflec-
tion and absorption, which are attainable experimentally,
such an analysis will be not pursued here.

3.1 Limiting forms of Z′′
y for the cases when δ � 1

and δ � 1

We first consider the behavior of the simpler function Z ′′
y .

Assuming δ � 1, in (14) the largest contributions to the
integral over x comes from values x � 1/δ � 1. Then,
using the approximate relation Re(x) � 1 + x2δ2 and ne-
glecting the second exponentially small term in the de-

nominator of (14) from the latter we find

Z ′′
y � −Ω, δ � 1. (16)

If, instead, δ � 1, in (18) the integral over x diverges
for x � δ−2/3 � 1. For such small x, it is possible to
approximate Re(x) to unity. Then we have

Z ′′
y � − 2

π
δΩ

∫ ∞

0

dx

1 + δ4x6 π
2

= −2
3

(
2
π

)1/6

Ωδ1/3, δ � 1. (17)

3.2 Limiting forms of Z′′
x for the cases when δ � 1

and δ � 1

Let us consider now Z ′′
x . We start the analysis with the

case when the anomaly parameter is very small (δ � 1). If
the parameter ∆, characterizing the degree of temperature
anisotropy, satisfies the condition δ

√
1 − ∆ � 1, then in

(14) the largest contribution to the integral over x comes
from x � 1/δ � 1, and the function Z ′′

x approximately is
the same as Z ′′

y (16),

Z ′′
x � −Ω, δ � 1, δ

√
1 − ∆ � 1. (18)

If, additionally, ∆ < 0 and δ
√|∆| � 1, then the primary

contribution to Z ′′
x (14) comes from x ≈ 1/

√|∆|,

Z ′′
x � − 2

π
δΩ

∫ ∞

0

dx

1 + |∆|δ2 + x2δ2
� − Ω

δ
√|∆| ,

∆ < 0, δ � 1, δ
√
|∆| � 1. (19)

In the limit of high values of the anomaly parameter
(δ � 1), the number of interesting limiting cases becomes
larger. The first of them corresponds to the situation,
when 1 − ∆ � 1; i.e. to the situation when one has a
highly anisotropic plasma with Tx � T⊥. For such δ and
∆ in (14) are significant only the values of x � 1/δ � 1,
and for Z ′′

x we obtain a result similar to (18):

Z ′′
x � −Ω, δ � 1, 1 − ∆ � 1. (20)

As the parameter ∆ decreases one has an increase of the x
values giving important contributions to the integral (14),
according to the relation x ∼ 1/δ

√
∆ if ∆ satisfies the

inequalities 1 � ∆ � δ−2/3. In such conditions from (14)
we find

Z ′′
x � − Ω√

∆
, 1 � ∆ � δ−2/3. (21)

In the case of relatively weak temperature anisotropy,
when |∆| � δ−2/3 � 1, the largest contribution to Z ′′

x

(14) comes from x � δ−2/3 � 1, and the function Z ′′
x has

the same asymptotic expression (17) as Z ′′
y :

Z ′′
x � −2

3

(
2
π

)1/6

Ωδ1/3, 1 � δ−2/3 � ∆. (22)
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In the domain where ∆ < 0 and in absolute value is
relatively small, 1 � |∆| � δ−2/3, for calculation of
Z ′′

x (14), we may use the approximate expression Re(x) �
1 − |∆|x2δ2. Then, from (14) we find

Z ′′
x � − 2

π
δΩ

∫ ∞

0

1 − |∆|x2δ2

(1 − |∆|x2δ2)2 + π
2 δ4x6 exp (−x2)

dx

� −
√

π

2
Ω

δ∆2
, ∆ < 0, 1 � |∆| � δ−2/3. (23)

Finally, for ∆ < 0 and large value of |∆| from (14) we
arrive to a result of the form (19)

Z ′′
x � − Ω

δ
√

∆
, ∆ < 0, |∆| � 1, δ � 1. (24)

Comparing (19) and (24) we can see that the common
conditions of their validity are the inequalities |∆| �
max(1, δ−2), (∆ < 0).

3.3 Results of the numerical calculations

The results of the numerical calculations of the impedance
imaginary part Z ′′

x are reported in Figures 2 and 3. Fig-
ure 2 shows plots of the function −Z ′′

x vs. δ, parameter
measuring the degree of anomaly of the skin-effect. The
three curves in Figure 2 corresponds to three values of
the temperature anisotropy: Tx = T⊥ (∆ = 0), T⊥ = 4Tx

(∆ = 0.75), Tx = 5T⊥ (∆ = −4). The curve corresponding
to ∆ = 0 describes the function −Z ′′

y as well. The behav-
ior of this latter curve is in agreement with that follow-
ing from the asymptotic expressions (16, 17). The curve
with ∆ = 0.75 shows a small modification in the func-
tion −Z ′′

x , in agreement with formulae (18, 20). The curve
corresponding to ∆ = −4, for small δ values, behaves as
−Z ′′

x � Ω = 0.1, in agreement with (18), while, with the
increase of δ, it shows a decreasing behavior according to
formulae (19) and (24).

Figure 3 shows plots of −Z ′′
x vs. ∆ = 1 − Tx/T⊥ for

three values of δ = 0.3, 1, 3. The curve with δ = 0.3
shows a small modification of −Z ′′

x , which does not con-
tradict formulae (18, 19). These latter formulae (or for-
mulae (20, 24)) allow to qualitatively understand the be-
havior of the −Z ′′

x curve with δ = 1. The non-monotonic
behavior of the −Z ′′

x curve with δ = 3 corresponds to for-
mulae (16, 21–24). In fact, according to (16) for ∆ values
close to unity, one has −Z ′′

x � Ω = 0.1, the function
−Z ′′

x increases according to (21) and reaches its maxi-
mum in the region |∆| � δ−2/3, which corresponds to
formula (22). Further, in agreement with formula (23), for
1 > |∆| > δ−2/3, the function −Z ′′

x shows a relatively
rapid decrease proportional to ∆−2. Finally, as |∆| > 1, a
domain is entered where formula (24) holds, which predict
a slow decrease of the impedance imaginary part with the
increase of the electron temperature anisotropy.

4 Phase-shift at reflection

After having determined the impedance imaginary parts,
we move to discuss how the phase-shift of the reflected

wave depends on the plasma parameters. First of all, using
the asymptotic formulae (16–24) derived in the previous
Section 3, we give a summary of approximate formulae of
the phase-shift Ψ (12) for different domains of the plasma
parameters:

Ψ � 0, |∆| � max(δ−2, δ−2/3), (25)

Ψ � −2Ω +
2Ω

δ
√|∆| , δ � 1, δ

√
|∆| � 1, (26)

Ψ � 2Ω − Ψm, δ � 1, 1 − ∆ � 1, (27)

Ψ � 2Ω√|∆| − Ψm, 1 � ∆ � δ−2/3, (28)

Ψ � π

2
Ω

δ∆2
− Ψm, 1 � |∆| � δ−2/3, ∆ < 0, (29)

Ψ � 2Ω

δ
√|∆| − Ψm, |∆| � 1, δ � 1, (30)

where Ψm stands for the maximum absolute value of the
phase-shift

Ψ =
4
3

(
2
π

)1/6

Ωδ1/3 =
4
3

(
2
π

)1/6 (
vT ω2

ω2
Lc

)1/3

· (31)

According to (25) the phase-shift is close to zero when
the electron temperature anisotropy is relatively small. As
the degree of anisotropy is increased, the absolute value
of the phase-shift too increases. For δ � 1 the phase-shift
reaches the value −2Ω (26) for rather large temperature
anisotropy, when |∆| � δ−2 � 1 or Tx � T⊥δ−2 � T⊥.
When, instead, δ � 1, one has that: (i) the maximum
phase-shift absolute value Ψm becomes significantly larger
than 2Ω; and (ii) Ψm is reached for relatively small tem-
perature anisotropy, |Tx − T⊥| � T⊥δ−2/3. That the
phase-shift is larger in the case of large δ values is traced
back to the fact that than larger the skin-effect degree
of anomaly, than stronger the wave magnetic field influ-
ence on the electron kinetics in the skin-layer. Figure 4
reports plots of the phase-shift Ψ versus δ for three values
of ∆: 0.75 (T⊥ = 4Tx), −1 (Tx = 2T⊥), −4 (Tx = 5T⊥).
For small δ all the curves are close to zero, in agreement
with formula (25). Far from δ = 0, the behavior of the
function Ψ depends on the value ∆. When T⊥ = 4Tx,
(∆ = 0.75), due to the Z ′′

x weak variation for δ ≤ 9 (see
Fig. 2), the Ψ dependence on δ is essentially controlled by
the function 2Z ′′

y shifted by 2Ω along the ordinate axis. If
Tx = 5T⊥ (∆ = −4) the behavior of the curve in Figure 4
corresponds to formulae (25, 26, 30). Finally, the curve
of Figure 4 with ∆ = −1 (or Tx = 2T⊥) is qualitatively
described by formulae (25, 29, 30). As a whole, Figure 4
shows that than larger δ and the ratio Tx/T⊥, than larger
the absolute value of the function Ψ too. Figure 5 reports
plots showing the phase-shift Ψ vs. ∆ for three values of
δ: 0.3, 1 and 3. The behavior of the curves shown in Fig-
ure 5 bears resemblance with that of the function −2Z ′′

x

(see Fig. 3), with the only difference that all the curves
are shifted along the ordinate axis by the amount 2Z ′′

y ,
depending on the δ values. The function Ψ , analyzed nu-
merically in this section, together with |Rα| � 1−2Z ′

α (8),
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Fig. 4. The phase-shift of the reflected wave Ψ versus
δ = vT ωL/ωc for three values of the electron temperature
anisotropy: ∆ = 0.75 (T⊥ = 4Tx); ∆ = −1 (Tx = 2T⊥);
∆ = −4 (Tx = 5T⊥).

Fig. 5. The same function as in Figure 4, versus electron tem-
perature anisotropy ∆ = 1−Tx/T⊥. The different curves corre-
spond to three values of the parameter δ = vT ωL/ωc: 0.3, 1, 3.

fully determines the intensity and polarization of the re-
flected wave. Sometimes, to describe the elliptically po-
larized wave, the Stokes parameters are used (see, for in-
stance, [24]). When the absolute values of the impedance
components Z ′

α and Z ′′
α are small, for the Stokes parame-

ters approximately one has

S0 = |Rx|2 cos2 ϕ + |Ry|2 sin2 ϕ � 1 − A, (32)

S1 = |Rx|2 cos2 ϕ − |Ry|2 sin2 ϕ

� cos 2ϕ − 4Z ′
x cos2 ϕ + 4Z ′

y sin2 ϕ, (33)

S2 = |Rx||Ry| sin 2ϕ cosΨ

� (1 − 2Z ′
x − 2Z ′

y) sin 2ϕ, (34)

S3 = |Rx||Ry| sin 2ϕ sinΨ � 2(Z ′′
y − Z ′′

x ) sin 2ϕ. (35)

The relations (32–35), together with the real component
of the surface impedance Z ′

α, investigated in [17], and
with the phase difference Ψ , considered above, provide
full and exhaustive information on the reflected wave by
a collisionless overdense plasma with an anisotropic bi-
Maxwellian electron velocity distribution.

5 Conclusions

In this report we have shown how a linearly polarized
wave, reflected by a plasma surface in which the electrons
exhibit an anisotropic bi-Maxwellian velocity distribution,
transforms into an elliptically polarized wave. The degree
of ellipticity is given by the difference of the phase-shifts
of two components of the reflected wave.

We have also shown, that, when the distance traversed
by thermal electrons in a field period is less than the skin-
depth vT /ω � c/ωL, the absolute value of the phase-
shift difference is largest in a plasma with vTx/ω � c/ωL,
where vTx =

√
Tx/m is the thermal velocity along the

EDF anisotropy axis. This case corresponds to highly
anisotropic plasmas with T⊥ � Tx. In the opposite case,
when vT /ω � c/ωL, one has a stronger modification of
the reflected wave polarization. In such a case the largest
value of the phase-shift difference is found to exceed the
corresponding value of the previous case by the factor δ1/3,
which is much larger than 1. Besides, for its occurrence is
only required a relatively small temperature anisotropy,
|Tx − T⊥| � T⊥δ−2/3.

In the framework of the reported theoretical treat-
ment it has been possible to connect the basic parame-
ters of the reflected wave such as |Rx|, |Ry|, and Ψ to
the parameters of the reflecting anisotropic bi-Maxwellian
plasma Ω = ω/ωL, δ = ωLvT /ωc and ∆ = 1 − Tx/T⊥.
It means that in principle is possible to determine δ, Ω
and ∆ through the experimentally measurable quantities
|Rx|, |Ry|, and Ψ . In its turn, it also means that one can
determine the electron concentration and the two effective
temperatures Tx and T⊥. Experiments aimed at measur-
ing the above quantities would be two-fold useful. On one
hand, they would give information about plasmas with
anisotropic EDF, which are still not enough studied; on
the other hand, they could yield a better understanding of
different aspects of the processes of reflection and absorp-
tion of a test wave by an highly non-equilibrium plasma,
and show the ways to improve their theoretical descrip-
tion.
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Appendix

Here we give the derivation of the surface impedance com-
ponents and show how the wave magnetic field affects the
electron motion. Let us consider the interaction of the Ex

component with the plasma.The field inside the plasma
has the form

1
2
Ex(z) exp(−iωt) + c.c., z > 0. (A.1)

To define the field Ex(z), from the Maxwell equations we
have

d2

dz2
Ex(z) +

ω2

c2
Ex(z) = −4πiω

c2

∫
dvvzδf. (A.2)

The perturbation δf to the electron distribution func-
tion F is found from the kinetic equation

− iωδf + vz
d
dz

δf =
e

m

{
Ex(z)

∂F

∂vx

+
1
c
By(z)

[
vx

∂F

∂vz
− vz

∂F

∂vx

] }
= −Sx (z, vz) , (A.3)

where By(z) is the magnetic field component in the plasma
created by the impinging wave

By(z) = −i
c

ω

d
dz

Ex(z). (A.4)

In plasma with isotropic EDFs, the term in (A.3) con-
taining By(z) goes to zero. In other words, in isotropic
plasmas, the magnetic field does not affect the electrons
kinetics in the skin layer. At the contrary, in plasmas with
anisotropic EDFs like the bi-Maxwellian F , the term con-
taining By(z) is not zero. Physically, it implies that the
anisotropic electron distribution over velocities creates the
conditions for the magnetic field By(z) to rotate the elec-
trons from one degree of freedom to the other. Because of
this the magnetic field contributes to determine δf , i.e. to
influence significantly the electron kinetics. Besides, in the
skin-effect conditions, the magnetic field in absolute value
considerably exceeds the electric field, according to the
inequality c/ω � |d lnEx(z)/dz|−1. The joint manifesta-
tion of both these causes is responsible for the appearance
of new optical properties in plasmas with anisotropy in
the electron distribution function. Further, we consider
the simplest boundary conditions on the plasma surface.
Namely, we assume that electrons are specularly reflected

by the plasma boundary. Provided these conditions are
fulfilled, equation (A.3) gives

δf =
1
vz

∫ ∞

z

dz′Sx(z′, vz) exp
[
i
ω

vz
(z − z′)

]
, vz < 0;

(A.5)

δf = − 1
vz

∫ z

0

dz′Sx(z′, vz) exp
[
i
ω

vz
(z − z′)

]

− 1
vz

∫ ∞

0

dz′Sx(z′,−vz) exp
[
i
ω

vz
(z + z′)

]
, vz > 0;

(A.6)

Substituting the perturbation δf (A.5, A.6) into the r.h.s.
of equation (A.2) and performing the Fourier transform
over z, as it is usually done when specular reflection con-
ditions are assumed (see, for instance, [23]), from (A.2) we
obtain

Ex(z) =

− i
k

π

Ex(+0)
Zx

∫ ∞

−∞

dq

q2 − k2εx(ω/qvT )
exp(iqz), z > 0;

(A.7)

where Ex(+0) is the electric field on the plasma boundary.
In writing the expression (A.7), we have used the notation
Zx to indicate the component of the surface impedance
Zx = Ex(+0)/By(+0), giving the ratio between the elec-
tric and magnetic fields on the plasma surface. In (A.7) the
εx(ω/qvT ) is given by formula (4). Finally, equations (A.4)
and (A.7) gives us the formula (3) for Zx. The expression
for Zy follows from Zx, if we let Tx = T⊥.
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